Advanced Microeconomics

Decisions under risk

Harald Wiese

University of Leipzig

Part A. Basic decision and preference theory

- 1. Decisions in strategic (static) form
- 2. Decisions in extensive (dynamic) form
- 3. Ordinal preference theory
- 4. Decisions under risk

Decisions under risk

Overview

- 1. Simple and compound lotteries
- 2. The St. Petersburg lottery
- 3. Preference axioms for lotteries and von Neumann Morgenstern utility
- 4. Risk attitudes

Simple and compound lotteries

How lotteries arise

Lotteries may arise from decision situations such as

state of the world

		bad weather, $\frac{1}{4}$	good weather, $\frac{3}{4}$
strategy	production of umbrellas	100	81
	production of sunshades	64	121

They can be understood as

- bundles of goods;
- extensive-form decision situations;
- "payoffs"

Simple lotteries as bundles and trees

Lotteries as bundles of goods

$$L_{\text{umbrella}} = \left[100, 81; \frac{1}{4}, \frac{3}{4}\right] \text{ and } L_{\text{sunshade}} = \left[64, 121; \frac{1}{4}, \frac{3}{4}\right]$$

payment x_2 in case of good weather $\left(\text{prob.} \frac{3}{4}\right)$

121

81

• umbrella production

Simple lotteries as bundles and trees

Expected value of a simple lottery

Definition

$$E(L) = \sum_{j=1}^{\ell} p_j x_j, L = [x_1, ..., x_{\ell}; p_1, ..., p_{\ell}].$$

$$L = \left[2, 10; \frac{1}{4}, \frac{3}{4}\right]$$

$$E(L) = p_1 x_1 + p_2 x_2$$

$$\Leftrightarrow x_2 = \frac{E(L)}{p_2} - \frac{p_1}{p_2} x_1$$

$$E(L) = p_1 x_1 + p_2 x_1 = x_1$$

45°-line

Simple lotteries as bundles and trees

Lottery as a decision situation in extensive form

Lottery $L=\left[0,10;\frac{1}{3},\frac{2}{3}\right]$ can be seen as a "decision" situation in extensive form

- without a decision maker,
- nature moves

Are you risk averse?

Use introspection!

Problem

Do you prefer
$$L_1 = \left[0, 10; \frac{1}{3}, \frac{2}{3}\right]$$
 to $L_2 = \left[5, 10; \frac{1}{4}, \frac{3}{4}\right]$?

Problem

Do you prefer $L = \left[95, 105; \frac{1}{2}, \frac{1}{2}\right]$ to a certain payoff of 100?

Compound lotteries

Lotteries as "payoffs"

Definition

Let $L_1, ..., L_\ell$ be simple lotteries. \Rightarrow $[L_1, ..., L_\ell; p_1, ..., p_\ell]$ – a compound or two-stage lottery where ℓ can be infinite.

Problem

Consider $L_1=\left[0,10;\frac{1}{3},\frac{2}{3}\right]$ and $L_2=\left[5,10;\frac{1}{4},\frac{3}{4}\right]$. Express the compound lottery $L=\left[L_1,L_2;\frac{1}{2},\frac{1}{2}\right]$ as a simple lottery! Can you draw the appropriate trees, one of length 2 and one of length 1?

Decisions under risk

Overview

- 1. Simple and compound lotteries
- 2. The St. Petersburg lottery
- 3. Preference axioms for lotteries and von Neumann Morgenstern utility
- 4. Risk attitudes

The St. Petersburg lottery

Definition

- ▶ Imagine Peter throwing a fair coin *j* times until "head" occurs for the first time.
- Head (H) rather than tail (T) occurs
 - ▶ at the first coin toss (sequence H) with probability $\frac{1}{2}$,
 - ▶ at the second coin toss (sequence TH) with probability $\frac{1}{4}$ and
 - ▶ at the *j*th toss (sequence T...TH) with probability $\frac{1}{2^j}$.
- Peter pays 2^j to Paul if "head" occurs for the first time at the jth toss.
- St. Petersburg lottery:

$$L = \left[2, 4, 8, ..., 2^{j}, ...; \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, ..., \frac{1}{2^{j}}, ...\right].$$

▶ The probabilities are positive. However, do they sum up to 1?

The St. Petersburg lottery

Infinite geometric series

Fact

Infinite geometric series $\sum_{j=0}^{\infty} cq^j = c + cq + cq^2 + ...$ with |q| < 1 converges:

$$\frac{\textit{first term}}{1 - \text{factor}} = \frac{c}{1 - q}.$$

- The sum of the probabilities

 - ▶ is an infinite geometric series
 - with $q = \frac{1}{2}$
 - so that we obtain

The St. Petersburg lottery

Use introspection!

- ► How much are you prepared to pay for the St. Petersburg lottery?
- ▶ But

$$E(L) = \frac{1}{2} \cdot 2 + \frac{1}{4} \cdot 4 + \frac{1}{8} \cdot 8 + \dots = \infty$$

a paradox?

How to solve the paradox

- Limited resources?
- Expected utility?

Definition

$$E_{u}(L) = \sum_{j=1}^{\ell} p_{j} u(x_{j})$$

- the expected utility of a simple lottery $L = [x_1, ..., x_\ell; p_1, ..., p_\ell]$ with $u : \mathbb{R} \to \mathbb{R}$. u is called a von Neumann Morgenstern utility function
 - Bounded vNM utility u?

See manuscript!

Decisions under risk

Overview

- 1. Simple and compound lotteries
- 2. The St. Petersburg lottery
- 3. Preference axioms for lotteries and von Neumann Morgenstern utility
- 4. Risk attitudes

▶ Completeness axiom: Assume L_1, L_2 . \Rightarrow

$$L_1 \succsim L_2$$
 or $L_2 \succsim L_1$

▶ Transitivity axiom: Assume $L_1 \succsim L_2$ and $L_2 \succsim L_3$. \Rightarrow

$$L_1 \succsim L_3$$

▶ Continuity axiom: Assume $L_1 \succsim L_2 \succsim L_3$. \Rightarrow There is a $p \in [0, 1]$ such that

$$L_2 \sim [L_1, L_3; p, 1-p]$$

▶ Independence axiom: Assume L_1 , L_2 , L_3 and p > 0. \Rightarrow

$$[L_1, L_3; p, 1-p] \lesssim [L_2, L_3; p, 1-p] \Leftrightarrow L_1 \lesssim L_2.$$

Is the continuity axiom plausible?

Assume:

- ▶ L_1 payoff of $10 \in$;
- L₂ payoff of 0 €;
- ► L₃ certain death.

$$L_1 \succ L_2 \succ L_3$$

Determine your *p* so that:

$$L_2 \sim [L_1, L_3; p, 1-p]$$

$$p = 1 \Rightarrow [L_1, L_3; 1, 0] = L_1 \succ L_2.$$

Independence axiom: Exercise

Problem

Assume a decision maker who is indifferent between

$$\textit{L}_1 = \left[0, 100; \frac{1}{2}, \frac{1}{2}\right] \; \textit{and} \; \textit{L}_2 = \left[16, 25; \frac{1}{4}, \frac{3}{4}\right].$$

Show the indifference between

$$\textit{L}_{3} = \left[0, 50, 100; \frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right] \textit{ and } \textit{L}_{4} = \left[16, 25, 50; \frac{1}{8}, \frac{3}{8}, \frac{1}{2}\right]$$

by verifying:

$$\textit{L}_{3} = \left[\textit{L}_{1}, 50; \frac{1}{2}, \frac{1}{2}\right] \textit{ and } \textit{L}_{4} = \left[\textit{L}_{2}, 50; \frac{1}{2}, \frac{1}{2}\right].$$

Independence axiom: critics

Consider the lotteries

$$\begin{array}{ll} \textit{L}_1 = \left[12 \cdot 10^6, 0; \frac{10}{100}, \frac{90}{100}\right] & \textit{L}_3 = \left[1 \cdot 10^6; 1\right] \\ \textit{L}_2 = \left[1 \cdot 10^6, 0; \frac{11}{100}, \frac{89}{100}\right] & \textit{L}_4 = \left[12 \cdot 10^6, 1 \cdot 10^6, 0; \frac{10}{100}, \frac{89}{100}, \frac{1}{100}\right] \end{array}$$

- ▶ Do you prefer L_1 to L_2 and/or L_3 to L_4 ?
- ▶ Many people prefer L_1 to L_2 and L_3 to L_4 .
- But

$$\begin{array}{lll} L_1 & \succ & L_2 \Rightarrow \left[L_1, L_3; \frac{1}{2}, \frac{1}{2}\right] \succ \left[L_2, L_3; \frac{1}{2}, \frac{1}{2}\right] \text{ (independence)} \\ L_3 & \succ & L_4 \Rightarrow \left[L_2, L_3; \frac{1}{2}, \frac{1}{2}\right] \succ \left[L_2, L_4; \frac{1}{2}, \frac{1}{2}\right] \text{ (independence)} \\ & \Rightarrow & \left[L_1, L_3; \frac{1}{2}, \frac{1}{2}\right] \succ \left[L_2, L_4; \frac{1}{2}, \frac{1}{2}\right] \text{ (transitivity)} \end{array}$$

yields a contradiction! —> see next slide

Exercise

Problem

Reduce $[L_1, L_3; \frac{1}{2}, \frac{1}{2}]$ and $[L_2, L_4; \frac{1}{2}, \frac{1}{2}]$ to simple lotteries!

A utility function for lotteries

vNM utility function

Theorem

Preferences between lotteries obey the four axioms iff there is $u: \mathbb{R}_+ \to \mathbb{R}$ such that

$$L_1 \succsim L_2 \Leftrightarrow E_u(L_1) \ge E_u(L_2)$$

holds for all $L_1, L_2 \in \mathcal{L}$.

- ightharpoonup u represents \gtrsim on \mathcal{L} ;
- ▶ u − vNM utility function.

Distinguish between:

- ▶ $u : \mathbb{R}_+ \to \mathbb{R}$ vNM utility function (domain: payoffs);
- ▶ $E_u : \mathcal{L} \to \mathbb{R}$ expected utility (domain: lotteries).

A utility function for lotteries

Transformations

Definitions

u vNM utility function. v is called an affine transformation of u if v obeys $v\left(x\right)=a+bu\left(x\right)$ for $a\in\mathbb{R}$ and b>0.

Lemma

If u represents the preferences \succeq , so does any utility function v that is an affine transformation of u.

Problem

Find a vNM utility function that is simpler than $u(x) = 100 + 3x + 9x^2$ while representing the same preferences.

A utility function for lotteries

Exercise

Problem

Consider:

$$L^A := \left[x_1^A, ..., x_{\ell_A}^A; p_1^A, ..., p_{\ell_A}^A \right] \ \text{and} \ L^B := \left[x_1^B, ..., x_{\ell_B}^B; p_1^B, ..., p_{\ell_B}^B \right].$$

Let v be an affine transformation of u.

Show:

$$E_{u}\left(L^{A}\right) \geq E_{u}\left(L^{B}\right) \Leftrightarrow E_{v}\left(L^{A}\right) \geq E_{v}\left(L^{B}\right).$$

The construction of the vNM utility function

Consider:

- ▶ L_{bad} and L_{good} ($L_{good} \succ L_{bad}$);
- ▶ L so that $L_{good} \succsim L \succsim L_{bad}$.
- \Rightarrow By the continuity axiom, there exists p(L) such that

$$L \sim \left[L_{good}, L_{bad}; p\left(L\right), 1 - p\left(L\right)\right]$$

Problem

Find p (L_{good}) and p (L_{bad})! Hint: Translate $L \sim [L_{good}, L_{bad}; p(L), 1 - p(L)]$ into a statement on expected utilities.

The construction of the vNM utility function

$$L := [x; 1] \Rightarrow u(x) := p(L)$$

- a vNM utility function.
 - ▶ The decision maker is indifferent between x and $[L_{good}, L_{bad}; u(x), 1 u(x)]$.
 - ▶ u(x) is a value between 0 (the probability for L_{bad}) and 1 (the probability for L_{good})
 - ▶ *u* represents the preferences of the decision maker (as shown by Myerson, 1991, pp. 12).

Decisions under risk

Overview

- 1. Simple and compound lotteries
- 2. The St. Petersburg lottery
- 3. Preference axioms for lotteries and von Neumann Morgenstern utility
- 4. Risk attitudes

Definition

Given: $f: M \rightarrow \mathbb{R}$ (function on a convex domain $M \subseteq \mathbb{R}$). \Rightarrow

▶ f is concave if

$$f(kx + (1 - k)y) \ge kf(x) + (1 - k)f(y)$$

for all $x, y \in M$ and for all $k \in [0, 1]$ (with $\leq -$ convex).

f is strictly concave if

$$f(kx + (1 - k)y) > kf(x) + (1 - k)f(y)$$

holds for all $x, y \in M$ with $x \neq y$ and for all $k \in (0, 1)$ (with < – strictly convex).

Concavity

The line connecting f(x) and f(y) lies below the graph.

... and quasi-concavity

The second derivative

Lemma

Let $f: M \to \mathbb{R}$ with convex domain $M \subseteq \mathbb{R}$ be twice differentiable.

• f is concave on $M \subseteq \mathbb{R}$ iff

$$f''\left(x\right)\leq0$$

holds for all $x \in M$.

• f is convex on $M \subseteq \mathbb{R}$ iff

$$f''\left(x\right)\geq0$$

holds for all $x \in M$.

Convexity

The line connecting f(x) and f(y) lies above the graph.

Convexity: Exercise

Problem

Comment: If a function $f: \mathbb{R} \to \mathbb{R}$ is not concave, it is convex.

Definition

Assume \succeq on \mathcal{L} . A decision maker is:

risk neutral if

$$L \sim [E(L); 1]$$
 or $E_u(L) = u(E(L));$

risk-averse if

$$L \lesssim [E(L); 1]$$
 or $E_u(L) \le u(E(L));$

risk-loving if

$$L \succsim [E(L); 1]$$
 or $E_u(L) \ge u(E(L))$

for all lotteries $L \in \mathcal{L}$.

Risk aversion

$$L = [95, 105; \frac{1}{2}, \frac{1}{2}]$$

$$E_{L} = 100$$

$$u(100) = u(E(L)) > E_{u}(L) = \frac{1}{2}u(95) + \frac{1}{2}u(105)$$

Lemma

Lemma

Assume \succsim on $\mathcal L$ and an associated vNM utility function u.

A decision maker is:

- ▶ risk neutral iff u is an affine function (i.e., u(x) = ax + b, a > 0);
- risk-averse iff u is concave;
- risk-loving iff u is convex.

Exercise

Problem

Do the preferences characterized by the following utility functions exhibit risk-averseness?

$$u_1(x) = x^2, x > 0$$

$$u_2(x) = 2x + 3$$

•
$$u_3(x) = ln(x), x > 0$$

$$u_4(x) = -e^{-x}$$

$$u_5(x) = \frac{x^{1-\theta}}{1-\theta}, \theta > 0, \theta \neq 1$$

Certainty equivalent and risk premium

Definition

For any $L \in \mathcal{L}$, the payoff CE(L) is the certainty equivalent of L, if

$$L \sim [CE(L); 1]$$

holds.

Definition

For any $L \in \mathcal{L}$:

$$RP(L) := E(L) - CE(L)$$

- the risk premium.

Certainty equivalent and risk premium

Certainty equivalent

$$L = \left[95, 105; \frac{1}{2}, \frac{1}{2}\right]$$

Certainty equivalent and risk premium

Further exercises problem 1

Problem

Reconsider the figure from the previous slide and draw a corresponding figure for risk neutral and risk-loving preferences.

Risk aversion and risk loving in an x1-x2-diagram

- $p := (p_1, ..., p_\ell)$ and $x := (x_1, ..., x_\ell);$

Risk aversion and risk loving in an x1-x2-diagram

Slope of the indifference curve

$$\begin{split} \textit{MRS} &= \frac{\frac{\partial E_{p}^{\textit{u}}}{\partial x_{1}}}{\frac{\partial E_{p}^{\textit{u}}}{\partial x_{2}}} = \frac{\frac{\partial [\textit{p}_{1}\textit{u}(\textit{x}_{1}) + \textit{p}_{2}\textit{u}(\textit{x}_{2})]}{\partial x_{1}}}{\frac{\partial [\textit{p}_{1}\textit{u}(\textit{x}_{1}) + \textit{p}_{2}\textit{u}(\textit{x}_{2})]}{\partial x_{2}}} = \frac{\textit{p}_{1}\frac{\partial \textit{u}(\textit{x}_{1})}{\partial x_{1}}}{\textit{p}_{2}\frac{\partial \textit{u}(\textit{x}_{2})}{\partial x_{2}}}\\ \textit{MRS} &= \frac{\textit{p}_{1}}{\textit{p}_{2}} \text{ for } x_{1} = x_{2}. \end{split}$$

Example

Risk neutrality:

$$\begin{array}{rcl} u\left(x\right) & = & ax+b, a>0 \\ MRS\left(x_{1}\right) & = & \frac{p_{1}}{p_{2}}\frac{\partial u\left(x_{1}\right)}{\partial x_{1}} = \frac{p_{1}}{p_{2}a} = \frac{p_{1}}{p_{2}} \\ \end{array}$$

Further exercises

Problem 1

Socrates has an endowment of 225 million Euro most of which is invested in a luxury cruise ship worth 200 million Euro. The ship sinks with a probability of $\frac{1}{5}$. Socrates vNM utility function is given by $u(x) = \sqrt{x}$. What is his willingness to pay for full insurance?

Problem 2

Identify the certainty equivalent and the risk premium in the x_1 - x_2 diagram for risk-averse preferences.

Problem 3

Let $W = \{w_1, w_2\}$ be a set of 2 states of the world. The contingent good 1 that pays one Euro in case of state of the world w_1 and nothing in the other state is called an Arrow security. Determine this Arrow security in an x_1 - x_2 -diagram.

Further exercises: Problem 4

Sarah may become a paediatrician or a clerk in an insurance company. She expects to earn 40 000 Euro as a clerk every year. Her income as paediatrician depends on the number of children that will be born. In case of a baby boom, her yearly income will be 100 000 Euro, otherwise 20 000 Euro. She estimates the probability of a babyboom at $\frac{1}{2}$. Sarah's vNM utility function is given by $u\left(x\right)=300+\frac{4}{5}x$.

- Formulate Sarah's choices as lotteries!
- What is Sarah's choice?
- The Institute of Advanced Demography (IAD) has developed a secret, but reliable, method of predicting a baby boom. Sarah can buy the information for constant yearly rates. What is the maximum yearly willingness to pay?
- Sketch Sarah's decision problem in x_1-x_2 space where income without babyboom is noted at the x_1 -axis and income with babyboom at the x_2 -axis.